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Abstract: Learning a robust and invariant representation of various unwanted factors in sign language recognition
(SLR) applications is essential. One of the factors that might degrade the sign recognition performance is the lack of
signer diversity in the training datasets, causing a dependence on the singer’s identity during representation learning.
Consequently, capturing signer-specific features hinders the generalizability of SLR systems. This study proposes a
feature disentanglement framework comprising a convolutional neural network (CNN) and a long short-term memory
(LSTM) network based on adversarial training to learn a signer-independent sign language representation that might
enhance the recognition of signs. We aim to improve the feature representations by incorporating various regularization
techniques to facilitate feature disentanglement. Particularly, Kullback-Leibler divergence between uniform distribution
and output of a signer classifier is employed to reduce the effect of signer identity on spatial embeddings. Similarly, the
optimal transport (OT) distance and mean square error are investigated to minimize the disparity between the spatial
and temporal representations of the same signs performed by different signers. The proposed framework is evaluated on
two Turkish isolated sign language datasets constituting varying characteristics and challenges. The qualitative results
show that the proposed feature disentanglement framework helps reduce the influence of the signer’s identity on the sign
representations. According to the quantitative analyses, the best performances of 94% and 89% classification accuracy
are obtained for two Turkish sign language benchmark datasets, BosphorusSign22k and Ankara University Turkish Sign
Language (AUTSL) datasets, respectively.
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1. Introduction
Sign language enables primary communication with the Deaf community. Although there are more than 300
sign languages around the world [1], accessing educational material for sign languages and assistance is still
a challenge [2]. Therefore, sign languages are considered underresourced languages [3] which lack digital
resources [4]. Automatic sign language recognition (SLR) facilitates designing tools and generating digital
material to improve sign language education and applications, such as sign language translation [5, 6] and
animation [7]. For a successful SLR framework, powerful representations should be learned from sign videos
containing the signer’s face, body, and hand gestures. Here, we can define a powerful representation of sign
video in terms of capturing the distinct actions of a sign, discarding the signer identity contaminating the
representation.

Recognizing sign languages requires learning a unified representation for the gestures of multiple body
parts, such as torso, face, and hands [8], ignoring the signers’ environmental factors and identity. On the other
∗Correspondence: inci.baytas@bogazici.edu.tr
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hand, the number of unique signers in the SLR frameworks is often insufficient to attain signer independence
and generalization. Although the goal is not to identify signers, their identities, outfits, and accessories might be
captured by the SLR frameworks. As a result, a significant gap between the training and evaluation performances
might occur under a singer-independent evaluation protocol, where videos of test signers are not included in
the training set. Therefore, reducing the signer dependency in SLR frameworks is crucial.

One of the causes of singer dependency in the SLR frameworks is the lack of signer variations in
the training dataset. The limited number of signers leads to overfitting, a prevalent issue in convolutional
neural network (CNN) based SLR frameworks. Some studies consider skeletal joint data to reduce the signer
characteristics in the learned sign representations [9, 10]. However, sign language datasets do not necessarily
contain ground truth annotations for key joints. In such cases, whole-body, face, and hand joints should
be extracted first. Moreover, skeleton-based SLR models constitute several challenges, such as difficulty in
capturing the high-level spatial structure [11]. Therefore, when an RGB-based SLR framework is preferred,
ensuring its invariance to signer characteristics is critical.

This study poses the signer independence in RGB-based SLR frameworks as a disentangled representation
learning problem. The proposed SLR framework aims to disentangle singer features from the sign features to
improve the generalizability of the SLR model. An isolated SLR task, where each video contains a single gloss.
A gloss could be defined as the word associated with a sign. The spatial and temporal representations are
learned using a CNN encoder and a long short-term memory (LSTM) network. Complex architectures are
not chosen to observe the contribution of the feature disentangling. For this purpose, an adversarial training
framework is proposed with several regularization techniques to reinforce the feature disentanglement further.
The contributions of the study are outlined below.

• Inspired by the unsupervised domain adaption technique [12], we train a signer classifier and the sign
recognition module to disentangle the spatial representation of the sign gloss from the signer.

• We investigate the Kullback-Leibler (KL) divergence between the signer predictions and uniform distribution
to reinforce feature disentanglement. Regularizing the adversarial training with the KL divergence intends
to compel the encoder to learn spatial representations confusing the signer classifier.

• We investigate the optimal transport (OT) distance between the signer predictions of the same glosses. The
goal of the OT distance is to facilitate learning spatial representations with fewer variations for the same
glosses due to different signers.

An extensive ablation study is conducted to explore the performance contributions of the different components
in the proposed framework. The proposed approaches are evaluated on two publicly available Turkish sign
language datasets, BosphorusSign22k [13] and Ankara University Turkish Sign Language (AUTSL) datasets [14].
Both quantitative and qualitative analyses are provided. The rest of the manuscript is structured as follows:
A literature review on SLR and feature disentanglement for closely related gait recognition is provided in
Section 2. The proposed model, loss functions, and the training framework are introduced in Section 3. Datasets,
experimental setup, and the results of quantitative and qualitative analyses are presented in Section 4. Finally,
the conclusion and future work are discussed in Section 5.

2. Related work
This study poses the signer-independent SLR as a disentangled representation learning problem. Disentangled
representation learning has been popularly applied to recognition tasks. For instance, Tran et al. proposed

2



ERDOĞAN and BAYTAŞ/Turk J Elec Eng & Comp Sci

an adversarial disentangled representation learning framework to alleviate the dependence on the pose in face
recognition [15]. For this purpose, the authors trained an auto-encoder focusing only on identity. Meanwhile,
a multitask discriminator that predicts identity and pose is trained, along with a generator that is conditioned
on the input face image [15]. Likewise, Liu et al. presented an encoder, a generator, and discriminators for
disentangling the content and style of images [16]. In addition, Oldfield et al. [17] preferred to train a generative
adversarial network (GAN) so that the latent representation of a facial attribute can be disentangled from
the other attributes. The typical approach in the studies mentioned above [15, 16] is utilizing GAN loss to
encourage disentangling a face image’s pose, shape, and identity. On the other hand, the SLR problem also
requires temporal modeling.

Feature disentangling is also essential for the gait recognition problem. Gait recognition is concerned
with learning to represent a person’s manner of walking rather than their outfit and accessories. In this regard,
gait recognition and SLR have some similarities, such that both tasks require learning a representation of an
individual’s posture and movement. In gait recognition, the learned representation is desired to embed the
individual’s identity but to be invariant to external factors such as outfit. On the other hand, representation
learned for a sign should not carry any information indicating the identity of the individual who performs
it. Although they aim to be invariant to different factors, they could benefit from feature disentanglement.
However, when a CNN-based framework is used, unwanted information due to variations in people’s appearance
might leak into the learned gait representation. Zhang et al. [18] addressed this issue by learning appearance
invariant gait representations from walking videos using auto-encoders. Their proposed framework is regularized
with the disparity between the gait representations of the same individual with different appearances resulting
in feature disentanglement [18]. Li et al. focused on the reidentification of a subject without paying attention
to their outfits with a color agnostic shape extraction network (CASE-Net) that is trained with an adversarial
loss [19]. Meanwhile, Yang and Yao aimed to disentangle the representation learned for hand pose from the
background and camera viewpoint utilizing variational auto-encoders (VAEs) [20].

A few studies focus on disentangled representation in the SLR literature. For instance, Ferreira et al.
utilized an adversarial loss for signer-independent SLR [21]. The authors employed the KL divergence to enforce
a signer classifier’s predictions to become uniform, encouraging the removal of the signer’s characteristics from
the sign representation. However, unlike this study, Ferreira et al. considered only hand images with a limited
number of signs [21]. Zhang et al. focused on a similar task, speaker-independent lipreading for disentangled
visual speech recognition [22]. As in Ferreira et al. [21], a speaker classifier with KL divergence is employed to
disentangle speech features from the speaker’s identity.

This study proposes an adversarial training framework for the signer-independent SLR task. The proposed
architecture comprises spatial and temporal representation learning modules. A signer classifier and additional
regularizers support disentanglement, boosting the disparity between sign and signer representations. The
contribution of the proposed framework to signer-independent representation learning is investigated for shallow
and deeper architectures with two publicly available Turkish sign language datasets of varying challenges.

3. Method
Isolated SLR is defined as a multiclass classification problem where learning a representation of a sign video’s
spatial and temporal patterns is essential. In this study, we propose the architecture in Figure 1 comprising a
CNN encoder, an LSTM network, and fully connected projection layers. The entire framework is trained in an
end-to-end manner.
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Figure 1. The proposed framework. The gradient reversal returns negative feedback from the signer classifier
to update the spatial encoder. Dashed lines denote additional regularizers utilizing the encoder, LSTM, and
signer classifier outputs. Depending on the dataset, one or a combination of the regularizers might be employed.

3.1. Spatial and temporal modeling
Spatial embeddings for sign language video frames are obtained using a convolutional encoder. This study
investigates the feature disentanglement with both shallow and deep CNN encoders. Frame embeddings are
later projected into a gloss space as follows:

ei = E (xi; θE) , i = 1, · · · , T (1)

egi = fp (ei) , i = 1, · · · , T, (2)

where xi is the ith frame of the input video, E (·) denotes a convolutional encoder parameterized by θE , fp

denotes fully connected layers to project the frame embeddings into the gloss space, and T is the total number
of frames considered in the input video. Thus, the spatial embeddings of the sign video form a multivariate
sequence that corresponds to a sign gloss. The sequential nature of the gloss video entails temporal modeling.

The LSTM network [23] is one of the most popular recurrent neural network (RNN) architectures used
for sequential modeling. In this study, we train an LSTM network with the embeddings in the gloss space, egi .
For each gloss, we obtain a sequence of hidden states of the LSTM network as follows:

{h1,h2, · · · ,hT } = LSTM ({eg1, eg2, · · · , egT }; θLSTM) , (3)

where hi is the hidden state that represents the sequence up to ith time step, θLSTM denotes the parameters
of the LSTM network, and hT is utilized as the temporal representation of the sequence of spatial embeddings.
The temporal representations are further used to train a sign classifier, fg , which is the target task.

3.2. Feature disentanglement with adversarial training
Spatial embeddings are supposed to contain a spatial pattern characteristic of the sign action independent of the
individual who performs it. However, the spatial embeddings are susceptible to the attributes of the signers, such
as their faces and posture. As a result, the generalization of SLR frameworks deteriorates. Inspired by domain
adaptation, we add a fully connected signer classifier fs as in Figure 1 that is simultaneously trained with the
spatial embeddings, ei , to reduce the effect of discriminative signer attributes on the sign representation. The
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encoder weights, θE , are updated to confuse the signer classifier’s decision. For this purpose, gradient reversal
layer [12], shown in Eq. 4, is included before the signer classifier.

R (ei, fs;α) =

{
ei, forward propagation
−α∂fs

∂ei
, backpropagation

, (4)

where α is a hyperparameter to control the amount of the gradient reversal effect.
When the gradient reversal is utilized after the CNN encoder, the encoder weight updates are encouraged

to maximize the signer classifier’s loss. Meanwhile, the signer classifier, fs weights are updated to improve
the classifier’s signer prediction. Thus, adversarial training is intended to remove signer features from the
spatial sign representation. However, our experiments show that adversarially training a signer classifier
is insufficient to improve an SLR framework’s signer-independent generalization. Therefore, the adversarial
training is regularized with the discrepancy between the video representations of the same gloss performed by
different signers.

3.3. Regularized adversarial training
Signer dependency in the SLR is due to the disparity between the latent representations learned for a gloss
performed by different signers. However, to facilitate sign recognition, the distinction between representations of
different glosses should be attained, while similar representations with slight variances should be maintained for
all the input videos of the same gloss. Therefore, we propose to promote signer-independency with regularization
based on reducing the discrepancy between distributions of gloss representations performed by different signers.
Mainly, KL divergence, OT distance, and mean square error (MSE) are utilized for this purpose.

KL divergence and the OT distance can be used to measure the difference between two distributions.
We employ the KL divergence given in Eq. 5 to quantify the divergence between the signer embeddings and
uniform distribution.

LKL (p||q) =
∑
i

p(i) log
p(i)

q(i)
, (5)

where p(i) is the uniform distribution and q(i) is the signer embedding output of the encoder. When included
in the adversarial training, KL divergence between the signer and uniform distribution enforces the frame
embedding updates in a way that a signer classifier cannot capture any difference between the frames of different
signers. The KL divergence is the number of bits required to transform one distribution to another. When
the KL divergence between the signer distribution and the uniform distribution, where each signer is equally
likely, is used to regularize the SLR framework, the training will be guided to create ambiguity regarding the
signer identity in the learned frame representations. In other words, the optimizer will try to convert the signer
distribution into a uniform distribution to reduce the KL divergence. Thus, the KL divergence regularization is
considered one of the methods that could facilitate disentangling the signer identity from the sign representation.

In the existence of invariance to signer identity, the learned representations of the same sign are expected
to be similar to each other, facilitating its recognition. Therefore, we could similarly penalize the distance
between the learned representations of the same signs performed by the different signers. Instead of directly
minimizing the Euclidean distances between the representations between the individual samples that might be
sensitive to outliers, we aim to reduce the discrepancy between signer distributions of the same signs over a
mini-batch. For this purpose, OT distance given in Eq. 6 is preferred. The OT distance is a metric measuring
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the minimum cost to transport one distribution to another [24]. It is well-known for alleviating issues in GAN
training, such as mode collapse [25, 26]. Compared to KL divergence, the OT distance is a valid metric with
symmetry. The OT distance might be preferred over the KL divergence under certain circumstances in which
the gradients of the KL divergence are ineffective [24]. The OT distance is computed for a mini-batch of signer
pairs performing the same sign.

LOT

(
µsi ,µsj

)
= inf

γ∈Π
(
µsi

,µsj

)E(si,sj)∼γc (si, sj) , (6)

where Π
(
µsi ,µsj

)
is the set of joint distributions, γ , with marginal distributions of µsi , c (si, sj) is the

Euclidean distance, and si =
1
T

∑T
t=1 fs

(
eit
)

and sj = 1
T

∑T
t=1 fs

(
ejt

)
are the average presoftmax logits over

the frames corresponding to two videos of the same gloss performed by signers i and j , respectively. When the
optimization problem tries to minimize the OT distance between si and sj , both encoder and LSTM modules
are updated to output similar logits for the videos of the same signs regardless of the signer’s identity. Thus,
the OT distance regularization may reduce the variance in the gloss representations of different signers.

We also investigate directly reducing the difference between the temporal embeddings of a sign gloss
performed by different signers by imposing the MSE loss regularization. The MSE loss below aims to boost the
signer independence by minimizing the distances between the gloss representations in the latent space of LSTM
obtained from the videos of different signers.

LMSE =

N∑
i=1

||h+
i − h−

i ||
2
2, (7)

where h+
i and h−

i are the hidden states of the LSTM unit’s last time step for the same gloss performed by
two different signers. Unlike KL divergence and OT distance, the MSE loss regularization directly penalizes the
discrepancy between the gloss embeddings used for recognition.

3.4. Loss function and optimization
The proposed regularized adversarial training framework is concerned with optimizing the following loss function.

L = Lg + Ls + LREG, (8)

where Lg and Ls given in Eqs. 9 and 10 denote crossentropy loss functions for gloss and signer classification,
respectively.

Lg = − 1

N

N∑
i=1

Cg∑
j=1

yij log fgj (hi) , (9)

Ls = − 1

N

N∑
i=1

Cs∑
j=1

ysij log fsj (ẽi) , (10)

where N is the batch size, Cg and Cs denote the number of unique glosses and signers, respectively, hi denotes

the hidden state of the LSTM network’s last time step for the ith video, ẽi =
1
T

∑T
t=1 R (et, fs;α) , y is the

ground truth label for the gloss classification and ys is the ground truth label for the signer classification.
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In Eq. 8, LREG is the regularizer which can be chosen as KL divergence, OT distance and the MSE loss
described in subsection 3.3. We analyze the benefits of these regularizers in the experiments. The contribution
of the terms in Eq. 8 to the signer-independent representation learning can be examined as shown below.

∂L
∂θE

=
∂Lg

∂θE
− α

∂Ls

∂θE
+

∂LREG
∂θE

(11)

∂L
∂θLSTM

=

{
∂Lg

∂θLSTM
, if LREG = LKL or LOT

∂Lg

∂θLSTM
+ ∂LMSE

∂θLSTM
, if LREG = LMSE

(12)

∂L
∂θg

=
∂Lg

∂θg
(13)

∂L
∂θs

=
∂Ls

∂θs
, (14)

where θE , θLSTM , θg , and θs denote the parameters of CNN encoder, LSTM network, fully connected layers
used for gloss classification and fully connected layers used for signer classification, respectively. The expressions
above indicate that when KL divergence or OT distance is used with gradient reversal, the CNN encoder
weights are updated to fool the signer classifier, minimize the regularize, and minimize the crossentropy loss
for sign recognition, Lg . At the same time, the LSTM network’s weights are updated to minimize Lg and
the MSE loss if used as the regularizer. If KL divergence and OT distance are computed with the encoder
embeddings, LSTM weights will be updated with the gradient of the gloss classification loss only due to the
path of the backpropagating error. If the regularization terms take the encoder’s output as their only input,
then the backpropagation will flow starting from the regularization objective and through the encoder network.
Therefore, only the derivative of the regularization objectives with respect to the encoder weights will be
computed by the backpropagation algorithm. Therefore, under such cases, LSTM weights will not be updated
with the error backpropagated from the regularization terms. Finally, the gloss and signer classifiers’ weights,
θg, θs , are updated to improve their corresponding classification performance.

4. Experiments
The proposed framework is evaluated based on quantitative and qualitative measures. Quantitative results
are presented for shallow and deeper CNN encoders, ResNet-18, and ResNet-34 architectures. All the models
are trained for a duration of between 100 and 200 epochs. The best performing checkpoints are used for
the final evaluation. In the experiments, each epoch took approximately 20 and 45 minutes for shallow and
deep networks used, respectively. All the experiments are conducted with two Turkish sign language data sets,
BosphorusSign22k [13] and AUTSL [14]. Gloss classification accuracy (GCA) is calculated below to evaluate
the isolated SLR performance.

GCA =
Number of correct predictions

Total number of samples (15)

GCA corresponds to classification accuracy. It is a commonly reported metric to evaluate the recognition
performance of isolated signs. GCA is considered the primary metric for performance evaluation since there is
no class imbalance issue in the training datasets used in the experiments. All the metrics are macroaverages
over the number of classes. Training, validation, and test splits provided by the benchmark datasets are used
in training and evaluation. The softmax probabilities of predictions are sorted in descending order to report
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top-1, top-3, and top-5 accuracies. The true positive is obtained if a correct prediction is observed in the top
one, among the top three, and the top five predictions with the highest probabilities for top-1, top-3, and top-5
accuracies, respectively.

4.1. Datasets
Both BosphorusSign22k [13] and AUTSL [14] have undergone a similar preprocessing approach as Gökçe et
al. [27] where signer’s face, torso, and hands are cropped to form new frames. Thus, facial expressions and hand
gestures become more prominent on the input frames. Sample and preprocessed frames from both datasets are
presented in Figure 2.

Figure 2. The first and the second rows demonstrate samples from BosphorusSign22k [13] and AUTSL [14]
datasets, respectively. The samples after the preprocessing step are presented in the last four columns.

BosphorusSign22k dataset [13] comprises 22, 542 videos of 744 signs. The dataset is split into a training
set of 18, 018 and a test set of 4524 videos. Videos in the training set are performed by five unique native
signers, while the test set has only one native signer whose videos are not used in training. In BosphorusSign22k,
signs are performed in a controlled environment with a green background. All the signers are in a standing up
position wearing a dark-colored outfit.

AUTSL dataset [14, 28] provided by the ChaLearn Challenge 1 is used in this study. This dataset has
36, 302 videos of 226 sign glosses performed by 43 unique signers divided into 31 , six, and six signers for
training, validation, and test sets, respectively. In the AUTSL dataset, not all the signers are necessarily
native signers. Therefore, some videos are performed by individuals who mimic signing the gloss in the video.
Therefore, intraclass variations are expected to be higher than BosphorusSign22k. Moreover, the AUTSL dataset
is collected rather in the wild. For this reason, the backgrounds of the videos differ. Another notable difference
between the two datasets is that while some AUTSL signers stand up, some sit down while signing. Therefore,
the position of hands relative to the torso might vary in the dataset. In AUTSL, significant similarities between
the signing action of some glosses can be observed [14]. For this reason, top-3 and top-5 GCA are also reported
along with top-1 GCA.

4.2. Implementation details
PyTorch library is used to implement the neural network architectures and the loss functions used in this study.
There are three types of 2D CNNs used in this thesis: a shallow encoder, ResNet-18, and ResNet-34. The
shallow encoder consists of eight convolutional layers and two or three fully connected layers for projection.

1https://chalearnlap.cvc.uab.es/challenge/43/description/
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After each convolution layer, leaky ReLU with a leakiness of 0.2 is used. The eight convolutional layers start
with convolution with a kernel of size three, stride of one and padding of one. The next convolution has a kernel
size of four, stride of two and padding of one. These two layers are repeated four times with the same order
to form the eight layers. The first of the eight layers raises the input channels of three to eight and the next
convolutional layers continue to increase the number of feature maps to 16, 24, 32, 40, 48, 56, and 64. The
shallow encoder takes the output of the convolutional layers and maps to 512 dimensional representation with the
fully connected layers of size 4096, 1024, and 512. ResNet-18 and ResNet-34 consist of 17 and 33 convolutional
layers along with a fully connected layer that outputs a 512 dimensional representation, respectively.

All the LSTM models in the experiments follow the same one-layer LSTM architecture with a hidden
layer dimension of 1024 and one fully connected output layer for gloss prediction. The output dimensionalities
of the gloss classifiers are 744 and 226 for the BosphorusSign22k [13] and AUTSL [14] datasets, respectively.
Signer classifiers, two- and three-layer fully connected layers with leaky ReLU activation, are added to the
output of the CNN encoder and the LSTM network, respectively. The output layers of the signer classifiers
have dimensionalities of six and 43 for the BosphorusSign22k [13] and AUTSL [14], respectively. Reversal layers,
which behave as identity functions during forward pass and reverse the gradient’s sign during backpropagation,
are located before the signer classifiers. Hyperparameter α of the reversal layer seen in Eq. 4 changes between
zero and one during training, following Ganin and Lempitsky [12]. Adam and AdamW optimizers are used with
a batch size of 16 and 32, respectively. For the experiments conducted with AUTSL, we used a cyclical learning
rate policy with a base learning rate of 10−6 and a maximum learning rate of 10−4 . For the experiments
conducted with BosphorusSign22k, we used a static learning rate of 5× 10−5 .

4.3. Ablation study and recognition performance

This section presents the recognition performance comparison for the proposed framework with various regu-
larizers and baseline methods. Results are divided into the shallow encoder and ResNet-18 sections. When the
shallow encoder described in subsection 4.2 is used to learn the spatial embeddings, we could observe a more sig-
nificant contribution of the proposed framework than the deeper encoder. However, the shallow encoder might
be inadequate to attain state-of-the-art performances. Therefore, we also report the ablation study results for
a deeper CNN encoder, ResNet-18.

We report various proposed approaches in addition to baselines. Encoder + LSTM denotes the base
model where adversarial training or regularizations are not applied. Encoder + LSTM + MSE is the model
trained with only MSE loss regularizer penalizing the differences in temporal representations of the same gloss
performed by different signers. Models with encoder + reversal + LSTM have the gradient reversal layer added
to the end of the spatial encoder adversarially trained with a signer classifier. The models with KL divergence
and OT distance have the corresponding regularizers added to their loss functions.

4.3.1. Shallow encoder
Shallow encoder results of BosphorusSign22k and AUTSL datasets are given in Tables 1 and 2, respectively.
The tables report baseline [10, 13, 14, 27, 29] and proposed framework recognition performances, as in GCA. For
the BosphorusSign22k dataset, MSE loss regularization, denoted by encoder + LSTM + MSE loss, performs
best compared to the encoder + LSTM model and some of the baselines from the literature. When we add the
reversal layer with the MSE regularizer, top-3 and top-5 accuracies improve further. We can also see that the
shallow encoder cannot reach the state-of-the-art set by the 3D CNN models [27]. According to the ablation
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study, although the adversarial training with gradient reversal and signer classifier might not improve the top-1
accuracy in every case, it can potentially boost top-3 and top-5 accuracies.

Table 1. BosphorusSign22k dataset GCA (%) results for the shallow encoder. Baseline performances are
given in the first four rows. The best performances are highlighted in bold.

BosphorusSign22kModel Top-1 Top-3 Top-5
Temporal accumulative features [29] 81.37 - 97.47
3D ResNets (MC3) [13] 78.85 - 94.76
IDT (HOG + HOF + MBH) [13] 88.53 - -
Score-level multicue fusion (3D ResNets) [27] 94.94 - 99.76
Encoder + LSTM (our baseline) 75.00 89.10 94.09
Encoder + LSTM + MSE 83.00 91.68 94.34
Encoder + reversal + LSTM 77.00 91.15 94.16
Encoder + reversal + LSTM + MSE 81.00 94.51 96.81
Encoder + KL divergence + reversal + LSTM 78.00 92.00 95.00
Encoder + OT distance + LSTM 80.00 92.00 95.00
Encoder + OT distance + reversal + LSTM 78.00 93.00 96.00

For AUTSL experiments, Table 2 shows that adversarial training with gradient reversal, KL divergence,
and OT distance regularizers significantly impact recognition performance. KL divergence regularizer performs
the best in the validation set, while the OT distance regularizer yields the best performance in the test set.
We also provide the state-of-the-art performance for AUTSL denoted by SAM-SLR [10], which is based on
graph convolutional networks (GCNs) on Table 2. The significant difference in the recognition performances
of AUTSL and BosphorusSign22k stems from the fundamental challenges AUTSL constitutes as described in
subsection 4.1. The impact of adversarial training with the signer classifier and regularizers on the signer
independence varies depending on the number of signers and glosses and the data collection environment.

4.3.2. Deep encoder
ResNet results of BosphorusSign22k and AUTSL datasets are given in Tables 3 and 4, respectively. ResNet-18 is
used in BosphorusSign22k experiments. In AUTSL experiments, we observe better results with ResNet-34 than
with ResNet-18. The tables report the performance of the baseline and the best performing proposed methods,
as in GCA. When deep encoders are used, we obtain similar behaviors to shallow encoder experiments. MSE
and OT distance regularizers contribute more to the recognition performance than the other proposed methods
for BosphorusSign22k and AUTSL datasets, respectively. We can achieve a state-of-the-art performance with
2D ResNet-18 and MSE regularizer for the BosphorusSign22k. On the other hand, performance improvement
over the ResNet-34 + LSTM baseline is subtle for the AUTSL dataset. We hypothesize that the support
of adversarial training and regularizers may diminish with deeper spatial encoders, as gradients during deep
network training are prone to vanish. Table 5 also presents the recognition performance of selected models, as
measured by additional metrics, namely precision, recall, and F1-score.
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Table 2. AUTSL dataset GCA (%) results for the shallow encoder. Baseline performances are given in the
first two rows. The best performances are highlighted in bold.

AUTSL (Val) AUTSL (Test)Model Top-1 Top-3 Top-5 Top-1 Top-3 Top-5
AUTSL baseline[14]
(CNN + FPM + BLSTM + attention) - - - 49.22 68.89 75.78

SAM-SLR (GCN based)[10] - - - 98.42 - -
Encoder + LSTM (our baseline) 59.00 77.29 83.20 56.00 73.30 80.86
Encoder + LSTM + MSE 63.00 78.42 84.65 60.00 77.60 83.45
Encoder + reversal + LSTM 65.00 81.91 86.93 62.00 80.54 86.45
Encoder + reversal + LSTM
+ MSE 67.56 84.54 89.04 57.93 76.5 82.09

Encoder + KL divergence
+ reversal + LSTM 72.00 89.00 94.00 62.00 80.00 88.00

Encoder + OT distance + LSTM 65.00 80.00 84.00 62.00 79.00 87.00
Encoder + OT distance + reversal
+ LSTM 71.00 86.00 90.00 64.00 81.00 87.00

Table 3. BosphorusSign22k GCA (%) results for ResNet-18. The top four rows are the benchmark results for
the BosphorusSign22k dataset. The best performances among our methods are denoted in bold.

BosphorusSign22kModel Top-1 Top-3 Top-5
Temporal accumulative features [29] 81.37 - 97.47
3D ResNets (MC3) [13] 78.85 - 94.76
IDT (HOG + HOF + MBH) [13] 88.53 - -
Score-level multicue fusion (3D ResNets) [27] 94.94 - 99.76
ResNet-18 + LSTM (our baseline) 90.00 95.00 96.00
ResNet-18 + LSTM + MSE 92.00 97.00 99.00
ResNet-18’ + LSTM + MSE 94.00 98.00 99.00
ResNet-18 + reversal + LSTM 88.00 97.00 98.00
ResNet-18 + OT distance + LSTM 88.00 96.00 97.00

Table 4. AUTSL GCA (%) for ResNet-34. The best performances among our methods are denoted in bold.

AUTSL (Val) AUTSL (Test)Model Top-1 Top-3 Top-5 Top-1 Top-3 Top-5
AUTSL baseline [14]
(CNN + FPM + BLSTM + attention) - - - 49.22 68.89 75.78

SAM-SLR (GCN based) [10] - - - 98.42 - -
ResNet-34 + LSTM
(our baseline) 89.00 95.00 97.00 90.00 96.00 98.00

ResNet-34 + OT distance + LSTM 89.00 96.00 97.00 89.00 96.00 98.00
ResNet-34 + KL divergence + reversal
+ LSTM 87.00 95.00 97.00 86.00 95.00 97.00

ResNet-34 + LSTM + MSE 89.00 95.00 97.00 88.00 96.00 97.00
ResNet-34 + KL divergence 80.00 92.00 95.00 76.00 91.00 94.00
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Table 5. Evaluation of the best performing models with more metrics. All the metrics are macroaverages over
the number of classes.

Dataset Model Validation dataset Test dataset
GCA (%) Precision (%) Recall (%) F1-score (%) GCA (%) Precision (%) Recall (%) F1-score (%)

BosphorusSign22k

Base (shallow encoder + LSTM) - - - - 0.76 0.78 0.75 0.73
Shallow encoder + reversal +

LSTM + MSE - - - - 0.82 0.83 0.82 0.80

Base (Resnet18 + LSTM) - - - - 0.85 0.87 0.86 0.83
Resnet18 + LSTM + MSE - - - - 0.90 0.89 0.89 0.87

AUTSL

Base (shallow encoder + LSTM) 0.58 0.63 0.58 0.58 0.54 0.58 0.54 0.53
Shallow encoder + reversal +

LSTM + KL divergence 0.71 0.73 0.71 0.71 0.57 0.62 0.57 0.57

Base (Resnet34 + LSTM) 0.89 0.90 0.89 0.89 0.90 0.90 0.90 0.89
Resnet34 + LSTM + MSE 0.89 0.89 0.88 0.88 0.88 0.89 0.88 0.88

4.3.3. Qualitative analysis

To investigate the effect of disentanglement on the learned representations, we illustrate the t-SNE plots of the
spatial and temporal embeddings in Figures 3 and 4 for AUTSL and BosphorusSign22k datasets, respectively.
The expected behavior is that groupings in the latent space should be due to the signs rather than the signers.
Therefore, clusters around signers should be dissolved after the feature disentanglement. The plots in Figures 3
and 4 show that the proposed feature disentanglement can improve the gloss groupings compared to the Encoder
+ LSTM baseline. This conclusion indicates that the feature disentanglement can impose signer independence
on the spatial and temporal embeddings.

Figure 3. t-SNE of the encoder and LSTM outputs on the BosphorusSign22k dataset. Colors denote six signer
classes and 20 gloss classes in Figures 3a, 3b and 3c, 3d, respectively. The base model is encoder + LSTM, and
the proposed model is chosen as the best performing regularized model for the dataset.

12



ERDOĞAN and BAYTAŞ/Turk J Elec Eng & Comp Sci

Figure 4. t-SNE of the encoder and LSTM outputs on the AUTSL dataset. Colors denote six signer classes
and 30 gloss classes in Figures 4a, 4b and 4c, 4d, respectively. t-SNE demonstrates that the performance
improvement is due to feature disentanglement, as previously hypothesized. The base model is encoder +
LSTM, and the proposed model is chosen as the best performing regularized model for the dataset.

In addition to the t-SNE plots, we quantify the distances and similarities between the embeddings with
and without the proposed feature disentanglement. For this purpose, Euclidean distance and cosine similarity
between the temporal embeddings based on signer and gloss groups are reported in Figure 5. Here, we expect
to observe that the similarity between the embeddings of different signs performed by the same signer should
decrease and that the same sign performed by different signers should increase after the feature disentanglement.
The plots in Figure 5 demonstrate that regularized adversarial training can facilitate signer independence in
the latent space of CNN-based SLR frameworks.

5. Conclusion
CNN-based SLR frameworks are prone to overfitting signer-specific features. The SLR aims to learn distinc-
tive representations for different signs rather than the signer’s identity. This study proposes an adversarial
training-based feature disentanglement approach for signer-independent representation learning. Notably, a
CNN encoder and LSTM network are trained with a signer classifier and various regularizers, such as KL di-
vergence, OT distance, and MSE loss. The proposed training scheme is evaluated on two isolated Turkish sign
language datasets, BosphorusSign22k and AUTSL. Quantitative and qualitative results show that the proposed
approach facilitates signer independence. Ablation study shows that MSE loss regularizers can be effective in
BosphorusSign22k, while OT distance regularization might boost top-3 and top-5 recognition performance in
AUTSL. The qualitative analysis demonstrates that the proposed feature disentanglement mitigates the vari-
ance in sign embeddings due to signer differences. On the other hand, when deeper CNN encoders are used

13



ERDOĞAN and BAYTAŞ/Turk J Elec Eng & Comp Sci

to extract spatial embeddings, the impact of the feature disentanglement diminishes compared to the state-
of-the-art performances. Therefore, the recognition performance of the proposed framework when deep spatial
encoders are used could be considered a limitation. In addition, the proposed framework requires RGB input
which requires high model complexity and memory during training. For this reason, the batch size might have
to be chosen small due to memory limitations causing a slower convergence. In future work, we will consider
generative models for feature disentanglement. GANs and VAEs can often be encountered for disentangled
representation learning for images in the literature. The 3D GAN and VAE architectures can be analyzed to
disentangle spatiotemporal and signer-related features to achieve signer independence in the SLR applications.
On the other hand, skeleton-based SLR frameworks are becoming ubiquitous, where skeleton joints with GCNs
are used to learn a sign representation. Compared to RGB-based SLR frameworks, using skeleton joints might
alleviate the influence of the signer’s appearance on the learned sign representation. However, in future study,
we will investigate the possible signer dependency in skeleton-based SLR models. Finally, signer-independent
SLR should also be studied for continuous sign language videos, where more than one sign is performed in one
video. The continuous SLR requiring recognition and segmentation of multiple glosses in a video poses various
challenges, including the recurring challenge of singer dependency.

Figure 5. Average cosine similarity between the AUTSL gloss representations based on a) signer and b) label
groupings. Euclidean distance between the AUTSL gloss representations based on c) signer d) label groupings.
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